Economic Geology News

Delamination – Induced HT – Metamorphism and A–Type Magmatism in the Eastern Kunlun Belt, China (September 15, 2021)

Most economic geologists will be aware of the metallogenetic role of granites and granitoids, and that their source is a strong control on possibly related mineralization. Investigation by petrological and geochemical methods allows determination of their origin by melting of three major 'source' components, which include (1) Peridotites of the Earth's upper mantle (asthenosphere, metasomatized lithosphere); (2) Intermediate volcanic or intrusive magmatic and metamorphic rocks of the deep continental crust (infracrustal); and (3) Clastic sediments and granitoids, and that their source is a strong control on possibly related mineralization. Investigation metamorphic equivalents (supracrustal).

Mainly mantle-derived (1) are A-type, or ferroan granitoids. They are characterized by iron–rich mafic mineralogy, ferroan, alkali–calcic to alkaline affinities, high LILE + HFSE abundances, typically by exsolving OH–F bearing fluids and crystallizating under reduced or oxidized conditions (Bonin 2007). A-type granites are formed under alkali–rich, anhydrous, and anorogenic conditions by melting of source rocks under low–pressure and high–temperature conditions (Frost & Frost 2019). They occur within plates and at distensive plate boundaries. They are often exposed at a subvolcanic level in ring complexes together with mafic igneous rocks. The origin of A–type granites was originally sought in extreme differentiation of basaltic melt; currently, derivation from lower crustal or lithospheric mantle sources is considered more common (Bonin 2007). A–type granites occur mainly in the Early to Middle Mesoproterozoic, a period that is marked not only by A–type granites, but also by anorthosites and by the absence of arc magmatism, subduction indicators, passive margins and seafloor spreading that characterize modern plate tectonics.

Different ore associations occur with A–type granitoids (Pohl 2020): i) Sodium–rich granites, striking because of attached albitite bodies, are related to concentrations of niobium, uranium, thorium, rare earth elements and some tin; and ii) potassium–rich granites with profuse hydrothermal silicification, tourmalinization and acidity produce deposits of molybdenum, tin, tungsten, lead, zinc and fluorspar. The second association may occur within the granite body (endogranitic greisen, pegmatite, and porphyry stockwork ore) or as vein fields in country rocks (exogranitic). A–type granites genetically related to magmatic–hydrothermal iron oxide–copper–gold (IOCG) deposits constitute a third economically important variety (Mueller & Groves 2019, Skirrow et al. 2019).

A–type granites are the alkali granites of continental rifts, for example the Jurassic W–Sn granites of the Nanling metallogenetic province in China or the Mesoproterozoic rapakivi granites in Finland with their large red perthitic alkali feldspars mantled by green plagioclase in a fine-grained groundmass. A suite of distinct post–collisional hornblendite, gabbro, granite and mafic granulite (ferroan granitoids?) was identified in the eastern Kunlun Orogen in China (Wang et al. 2022). This 3000–km–long W–E striking mountain belt formed by closure of the Proto–Tethys ocean that dated from the breakup of the Rodinia Supercontinent and by Late Paleozoic collision of Gondwana and Siberia. The authors provide petrological data such as zircon U–Pb geochronology, zircon in situ Hf isotope, mineral and whole–rock geochemistry, and whole–rock Sr–Nd isotope compositions. Strangely, Wang et al. (2022) fail to identify A–type granites in the text (and omit any reference to related mineralization), but in one of the figures (see below) they provide a geodynamic model sketch of the post–collisional extensional phase in the Late Devonian, when lithospheric delamination and upwelling of asthenosphere caused heating, deep metamorphism, partial melting and intrusion of S–type granites and A–type granitoids. This model may be useful as input into future research on the origin of A–type granitoids and their metallogeny.

Sketch showing post–collisional hornblendite, gabbro, S–type granite and A–type granitoid intrusions identified in the eastern Kunlun Orogen in China, caused by delamination and upflow of asthenosphere (Wang et al. 2022)


A quick search for an English language description of the Kunlun metallogeny was not successful. Maybe you have more luck?


Bonin, B. (2007) A–type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 97, 1–29.

Frost, B.R. & Frost C.D. (2019) Essentials of Igneous and Metamorphic Petrology. 2nd ed. 362 pp. ISBN 978-1-108-71058-9. Cambridge University Press.

Mueller, D. & Groves, D.I. (2019) Potassic igneous rocks and associated copper–gold mineralization. 5th ed. 398 pp. Mineral Resource Reviews. Springer.

Pohl W.L. (2020) Economic Geology, Principles and Practice: Metals, Minerals, Coal and Hydrocarbons – an Introduction to Formation and Sustainable Exploitation of Mineral Deposits. 2nd ed. 755 pp. Schweizerbart Science Publishers, Stuttgart. ISBN 978-3-510-65435-2.

Skirrow, R.G., Murr, J., Schofield, A., et al. (2019) Mapping iron oxide Cu–Au (IOCG) mineral potential in Australia using a knowledge–driven mineral systems–based approach. Ore Geology Reviews 113, 103011. OPEN ACCESS

Wang, Q., Zhao, J., Zhang, Ch., et al. (2022) Paleozoic post–collisional magmatism and high–temperature granulite–facies metamorphism coupling with lithospheric delamination of the East Kunlun Orogenic Belt, NW China. Geoscience Frontiers 13, 101271, ISSN 1674-9871. OPEN ACCESS

back to top


Brian McNulty's Book Review of my Economic Geology 2nd ed (Pohl 2020) (August 06, 2021)



Brian McNulty is Postdoctoral Researcher in Economic Geology at the University of Nevada, Las Vegas, with a Ph.D. from the University of Tasmania — CODES, Australia (2019). Find a link to his professional profile below, if you are interested; it is certainly remarkable how it took him across the globe.

Brian wrote this review for the Society of Economic Geology (SEG) Bulletin, where it appeared first online a few days ago (citation below). SEG has about 10,000 members across the world. I am a member of this Society for more than two decades; so I asked them to arrange a review. In quality, the SEG Bulletin is arguably the globally leading journal in Economic Geology.

Brian's review of my book is remarkable, one of the best I have ever seen. I don't mean that he lauds my Economic Geology, which he does, but his text of two pages is an excellent description that adresses all questions, which anyone might wish to have answered in a book review. I'll cite a couple of paragraphs:

"I thoroughly enjoyed the applied aspect of this textbook, specifically "Part III: The Practice of Economic Geology." We all have our own origin story and, for some of us, this geology adventure has led us to lifelong careers as explorers, resource modelers, engineers, or environmental scientists. The life cycle of natural resources from discovery, beneficiation, and through to remediation is wonderfully presented in this section and highlights the numerous areas of expertise that encompass the multidisciplinary field of economic geology. Pohl captures the essence of economic geology so eloquently with the following text":

"Never forget that exploration is not only a scientific and technical enterprise but foremost an investment" (p. 447)

Brian also writes: "The format of the book, which includes informative yet condensed chapters with ample suggested readings, makes for a great choice of textbook for undergraduate and postgraduate students, as well as an excellent addition to the libraries of professional geoscientists interested in understanding and applying aspects of economic geology to their field of interest."

"Overall, I appreciate the different ways this book could be utilized by students, various academic researchers, and industry professionals. The book is a valuable resource in introducing the geologic processes involved in metal, nonmetal, and fossil fuel formation, including explanatory petrogenetic and tectonic deposit models, as well as how to apply this knowledge to exploration. The book also summarizes the current understanding of metals, elements, and minerals on an individual basis and does not shy away from the fact that society, industry, and academia need to work together to provide solutions toward sustainable natural resource management."

Thank you for your efforts, Brian!


Brian McNulty Professional Profile

McNulty, B.A. (2021) BOOK REVIEW Walter L. Pohl: Economic Geology, Principles and Practice: Metals, Minerals, Coal and Hydrocarbons — Introduction to Formation and Sustainable Exploitation of Mineral Deposits (2nd revised edition): Schweizerbart Science Publishers, Stuttgart, 2020, hard-cover (ISBN 978-3-510-65441-3; price Euro 94.00), soft cover (ISBN 978-3-510-65435-2; price Euro 79.00) and ebook (ISBN 978-3-510-65436-9). Economic Geology (2021) 116 (6): 1485-1486. ISSN 0361-0128; doi:10.5382/econgeo.116.6.br02

back to top


Anthropocene Revisited — Biologists Foresee a Managable Future for the Entire Planetary Ecosystem. Open access paper (July 20, 2021)

Economic Geology strives to supply human societies with needed Earth materials. Geologists assist in discovery and exploitation of ores and minerals, and in controlling damage to stakeholders and the environment. If you are interested in the great frame of our work, the well-being of humanity and our planet, you may be interested to read this paper by Lehman et al. (2021).

The main content of the paper concerns population dynamics of hominins. Introductory remarks concerning the Anthropocene and geologists are somewhat perfunctory such as "...prompting geologists to begin applying the term Anthropocene to recognize the present moment" (Abstract see below). Are we concerned with moments? In fact, although accepted by the Working Group of the IUGS Stratigraphic Commission, the term has not yet been formally accepted (

Planet Earth. Courtesy European Space Agency (ESA)


The paper by Lehman et al. 2021 being OPEN ACCESS, you may skip the rest of this blog and go online to read it fully. For the others, here are some excerpts:

Abstract: Human populations have grown to such an extent that our species has become a dominant force on the planet, prompting geologists to begin applying the term Anthropocene to recognize the present moment. Many approaches seek to explain the past and future of human population growth, in the form of narratives and models. Some of the most influential models have parameters that cannot be precisely known but are estimated by expert opinion. Here we apply a unified model of ecology to provide a macroscale summary of the net effects of many microscale processes, using a minimal set of parameters that can be known. Our models match estimates of historic and prehistoric global human population numbers and provide predictions that correspond to some of the more complicated current models. In addition to fitting the data well they reveal that, amidst enormous complexity in our human and prehuman past, three key ecological discontinuities have occurred in turn: 1) becoming dominant competitors of large predators rather than their prey, 2) becoming mutualists with food species rather than acting as predators upon them, and 3) changing from a regime of uncontrolled population growth to one of controlled fertility instead. All three processes have been interlinked with cultural evolution and all three ushered in developments of the Anthropocene. Understanding the trajectories that have delivered us to this stage can help guide prudent paths into the future.

The Possibilist Agenda

Considering what is possible, and cutting on a separate plane across the range of attitudes from cynicism to pessimism to optimism to Pollyannaism, is "possibilism". In approaching self-inflicted problems of global scale, and also much more local problems, possibilism recognizes that the course of human events largely is not the domain of probability. Probability derives from combinations of many connected steps beyond our influence or knowledge. In human events, outcomes often depend on only a few major steps, often not beyond our influence or knowledge.

Therefore, in following the possibilist agenda, one first evaluates and eliminates what is impossible—what cannot occur by the laws of the universe. What remains is the tentatively possible, including both the desirable and the undesirable. Following the possibilist agenda means working tirelessly to imagine both possibilities and impossibilities and then laying plans to arrange events so that the desirable can be realized and the undesirable avoided — working to avoid unintended consequences. In this way, by superposing such thoughts onto recognized physical–biological–social problems of the world, including those described above, seemingly intractable problems may have possibilist solutions.

Directions Forward

Accompanying our domination and disruption of the planet has begun a conscious awareness of the magnitude of our powers to help guide us to prudent paths into the future. Ours is the first species to become aware of our global scope, the first to organize global communication and satellite monitoring of the planet as a whole, and the first consciously to consider how to create a sustainable planet.

We now face our next daunting challenge — learning to manage our role on the planet for our continued existence and — we can hope and expect — for that of our fellow creatures. Will our modern existence be a minor blip on the geological timescale, as indicated by the suffix " -cene" in " Anthropocene" ? Or will we be able — as a geologist suggested a century ago — to elevate our existence to the dignity of an era and advance the Anthropocene into the Anthropozoic?

There is reason for hope. It may seem unimaginable that we can learn to manage consciously the entire planetary ecosystem. We should, however, remember that throughout our relatively short history, the unimaginable repeatedly has morphed into the commonplace.


Lehman, Cl., Loberg, Sh., Wilson, M., Gorham, E. (2021) Ecology of the Anthropocene signals hope for consciously managing the planetary ecosystem. Proceedings of the National Academy of Sciences 118 (28) e2024150118; DOI: 10.1073/pnas.2024150118 OPEN ACCESS

back to top


Book Review 4 of my Economic Geology 2nd ed (June 15, 2021)

CITATION OF THE BOOK REVIEW: Frank Melcher (2021) Walter L. Pohl: Economic Geology, Principles and Practice: Metals, Minerals, Coal and Hydrocarbons - Introduction to Formation and Sustainable Exploitation of Mineral Deposits (2nd revised edition): Schweizerbart Science Publishers, Stuttgart, 2020, hard-cover (ISBN 978-3-510-65441-3; price Euro 94.00), soft cover (ISBN 978-3-510-65435-2; price Euro 79.00) and ebook (ISBN 978-3-510-65436-9). Mineralogy and Petrology. 10.1007/s00710-021-00754-y. OPEN ACCESS



Prof. Frank Melcher is Full Professor of Economic Geology at the Montanuniversität Leoben in Austria. He is an excellent teacher and scientist. I know him for remarkable papers on Columbite (Ta) deposits in Africa. The last publication in this series is:

Wouters, S., Hulsbosch, N., Kaskes, P., Claeys, P., Dewaele, S., Melcher, F., Onuk, P. & Muchez, P. (2020) Late orogenic gold mineralization in the western domain of the Karagwe-Ankole Belt (Central Africa): Auriferous quartz veins from the Byumba deposit (Rwanda). Ore Geology Reviews 125, 19 pp., 103666.

You may find more about Prof Melcher and his research at

In his review of my EG2, Prof. Melcher characterizes my book by ... "Economic geology is the application of geoscience to the supply of metals, minerals, and energy to society. The subject plays a central role in the exploration, evaluation, and development of deposits as well as in the mining and processing of raw materials. Economic geology is an indispensable discipline that is needed to meet mankind's increasing demand for nonrenewable raw materials and to further develop our society. In this expanded edition, Pohl is able to include current topics and crosslink them with future problems in the raw material supply. Thus, aspects of sustainable "green" mining, conservation of nature and the environment, and consequences for climate change are addressed within an ethical framework ..."

Melcher goes on with ... "Economic Geology, Principles and Practice is divided into four comprehensive Parts. In the first, the deposits of the metals are dealt with over 300 pages. In keeping with previous editions, the processes leading to the accumulation of metals in the Earth's crust and mantle ("metallogenesis") are treated first, and are described in detail and with the most up-to-date sources. Important subchapters are dedicated to the investigation methods for hydrothermal deposits as well as an outline of metallogenesis in the course of the Earth's history. This is followed by a chapter that is subdivided by the individual metallic raw materials, which are organized under the subheadings: iron and steel metals, nonferrous metals, precious metals, light metals as well as minor metals and speciality metals (including uranium and thorium), including many of the so-called critical raw materials. These individual chapters contain a veritable flood of interdisciplinary information and are a treasure trove for students, professors, professional geologists, and mineral enthusiasts. All relevant areas are represented including: mineralogy and geochemistry, deposit types and classification (numerous current examples), economic aspects, and notes on mining and processing ..."

The last chapter summarizes the two pages by ..."localities index, which helps in the targeted search for the about 1000 deposits and locations referenced in the EG2. The work is of an astonishing breadth and comprehensiveness. Basic knowledge of geology and mineralogy as well as some technical knowledge will make it easier for beginners to get started with this book. But with prior knowledge, it will captivate anyone interested in raw materials. This is a wonderful reference textbook that you will find yourself rereading again and again, whether to study a chapter in more detail, to look something up, or simply to learn something new. I highly recommend it to all mining geologists, reservoir geologists, and applied geoscientists ...."

Thank you, Frank, for your time in writing the review. Dear Reader, note that the book review is OPEN ACCESS (see above). One additional comment — the e-book version of my Economic Geology should soon be available. It will display all figures in colour.

back to top


A Heap of Gold — the Tiny Volcanic Island and Giant Lihir (Ladolam) Deposit of Papua New Guinea (May 18, 2021)

If you are interested in Plate Tectonics, Volcanic Island Arcs, Mantle hydration and fertilization, and extraordinary gold deposits, this is for you. If this is not your thing, forgive me. Nowadays, I am writing a paper on gold metallogeny and cannot help being fascinated and sharing this with you!

Figure 1 -- Newcrest's Lihir gold mine in PNG, sited in the caldera of Luise volcano (Courtesy itNews 2017) URL


The supergiant LIHIR (OR LADOLAM) alkalic epithermal, magmatic-hydrothermal gold deposit was discovered by rock chip exploration in 1982, locating auriferous alunite (Cooke et al. 2020). In 2019, total resources were estimated to 690 Mt at 2.3 g/t Au, equivalent to 50 Moz in situ gold. Ore bodies occur on the floor of a large volcanic amphitheater in Luise volcano, a Pleistocene stratovolcano built of shoshonitic volatile-rich, silica-undersaturated, and highly oxidized igneous rocks (Cooke et al. 2020) comprising alkaline lavas and tuffs of trachybasalt, basaltic trachyandesite and latite. The deposit is unique for the overprinting of epithermal gold mineralization over earlier porphyry-style veins and altered rocks with abundant anhydrite and carbonate but low-grade Au. The transition was probably caused by the collapse of a sector of Luise volcano into the sea (Sillitoe 1994). In an extensional setting from 0.6 Ma onwards, the mineralization changed to epithermal-style with sulfide and adularia alteration, during which the main resource was emplaced. High-T geothermal activity is ongoing and the recovered energy is used in the mine.

Epithermal activity produced at least six discrete mineralized zones, and each of these is dominated by refractory gold in arsenian pyrite. Gold is associated with adularia-pyrite-carbonate-anhydrite ± illite alteration assemblages, cemented breccias, and veins that overprinted the early porphyry-style features. Bonanza gold grades are associated with late-stage quartz and/or anhydrite veins.


Figure 2 -- Schematic cross-section through the present-day New Ireland Basin (from SW to NE) in the Lihir area (upper plate only). This block model is to illustrate the links between collision, microplate interaction, tectonic structure, regional magmatism and the focusing of melts and fluids. Tectonics control the regional metal endowment (melting of a metasomatized lithospheric mantle source described by McInnes et al. 2001) but local structure is responsible for the focusing of metalliferous liquids and fluids into an ore-forming system. Note Solvara-1 in the Southwest, a high-grade massive sulfide (SMS) seafloor mining prospect of copper, gold, zinc and silver that was abandoned in 2019. Courtesy Brandl et al. (2020).


Lihir lies in a broad, complex deformation zone caused by convergence of the Pacific and the Australian plate. The geodynamic setting is described as both postcollisional and back arc by Cooke et al. (2020). Brandl et al. (2020) place it into a former forearc followed by displacement to its current location in a rear- or backarc setting relative to active subduction along the New Britain Trench. The zone broke into microcontinents when colliding with the Ontong Java Plateau (OJP). Protracted, transtensional motion between distinct crustal blocks controls the location and timing of magmatism and mineralization (Figure 2).

Allow me to comment: One crucial point is missing in all this — the energy source. Energy is needed to initiate melting of the fertile mantle. Without energy, 2 billion years may pass by without ore formation. Look at the Jiaodong story in the blog before this one.


Brandl, Ph.A., Hannington, M.D., Geersen, J., et al. (2020) The submarine tectono-magmatic framework of Cu-Au endowment in the Tabar-to-Feni island chain, PNG. Ore Geology Reviews 121, 103491. ISSN 0169-1368. OPEN ACCESS.

Cooke, D.R., Sykora, St., Lawlis, E., et al. (2020) Lihir alkalic epithermal gold deposit, Papua New Guinea. Pp. 579–597 in Geology of the World's Major Gold Deposits and Provinces (eds Sillitoe, R.H., Goldfarb, R.J., Robert, F. & Simmons, S.F.), SEG Special Publications 23, Society of Economic Geologists. Doi: 10.5382/SP.23.28.

McInnes, B.I.A., Gregoire, M., Binns, R.A., et al. (2001) Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths. Earth Planet. Sci. Lett. 188, 169–183.

Sillitoe, R.H. (1994) Erosion and collapse of volcanoes: causes of telescoping in intrusion-centered ore deposits. Geology 22, 945-948.

back to top


GOLD * GOLD * GOLD * Remarkable Publications! (April 12, 2021)

If you work in the gold sector, you should acquire the following recent publications (references below). You need them in order to be up to date and for future reference at your work place. They are singular!

The first is the multi-authored SEG volume 'Geology of the World's Major Gold Deposits and Provinces', edited by Richard H. Sillitoe, Richard J. Goldfarb, F. Robert, and Stuart F. Simmons (2020a). The book packs 895 pages, numerous tables, coloured maps and sections, and provides descriptions of 29 of the world's largest gold deposits or districts, and of 7 overviews of great gold provinces including terrane-scale geologic parameters and their controls on the localization, styles, and timing of gold mineralization. Each description summarizes exploration history and regional and local geologic settings preparatory to synthesizing the salient lithologic, structural, alteration, and mineralization features of the deposit itself.

An Epilogue contains a paper on epithermal, Carlin and orogenic gold deposition — a must for mine geologists.

In the Foreword to the book, Mark Bristow Ph.D., the President and Chief Executive of Barrick Gold Corporation, who sponsored the publication, writes:

This special volume gives geology its deserved due and provides a timely insight into the world's major gold deposits and provinces. It will be a highly valuable, long-lasting reference for all geoscience practitioners of this and future generations. I (WLP) would add that SEG Special Publication 23 will also serve as a useful source for academic teaching and research libraries.

My second recommendation concerns the Introduction to the SEG-volume by Sillitoe (2020b) that provides a thumbnail sketch of each important gold deposit type, including geologic and economic characteristics and widely accepted genetic models, as well as briefly discussing aspects of their spatial and temporal associations and distributions. Currently, ore deposits are often differentiated as types that are haphazardly named, not following a logical system. Deposit types of gold, for example, in order of decreasing endowment and overall economic importance, comprise:

Paleoplacer, orogenic, porphyry, epithermal, Carlin, geologically young placer, reduced intrusion related, volcanogenic massive sulfide (VMS), skarn, carbonate replacement, and iron oxide-copper-gold (IOCG) (Sillitoe 2020b). Although in many respects alike to typical orogenic gold, the giant Jiaodong province deviates in some features and is by some considered as a new 'Jiaodong gold depost type' (Qiu et al. 2020). It has a premining gold resource exceeding 4,500 metric tonnes (t). Jiaodong is a rare case where relatively young gold ores (ca. 120 Ma) were formed in terranes that are billions of years older (ca. 2.9— 1.9 Ga). Host rocks are Mesozoic granitoids. Orebodies are mainly quartz-pyrite veins, veinlets and disseminated mineralization, controlled by complex faults. Pinkish K-feldspar alteration forms an outer halo to the quartz-pyrite-sericite inner alteration halo that is intimately associated with gold ore. Jiaodong gold metallogeny occurred within a broad period of transition from a circum-Pacific oblique compressional to an extensional tectonic regime between ca. 160 and 90 Ma (Qiu et al. 2020).

One possible solution for the plate tectonic setting of major Mesozoic gold deposit formation in the North China Craton; the Jiaodong province shown on right hand side. Note the gold source in metasomatized 'churning' mantle below (red dots). Courtesy Yang & Santosh 2020.


The SEG volume is not cheap but worth the expense. For those of you who find the cost too high I add below an open access source offering a different view about the possible new Jiaodong gold deposit type (Yang & Santosh 2020).


Qiu, K.-F., Goldfarb, R.J., Deng, J., et al. (2020) Gold Deposits of the Jiaodong Peninsula, Eastern China. Pp. 753— 773 in Geology of the World's Major Gold Deposits and Provinces (eds Sillitoe, R.H., Goldfarb, R.J., Robert, F., Simmons, S.F.), Spec. Publication 23, Society of Economic Geologists (SEG). Doi: 10.5382/SP.23.35.

Sillitoe, R.H., Goldfarb, R.J., Robert, F., Simmons, S.F. (eds) (2020a) Geology of the World's Major Gold Deposits and Provinces. Spec. Publication 23, 1-859 pp. Society of Economic Geologists (SEG).

Sillitoe, R.H. (2020b) Gold Deposit Types: An Overview. Pp. 1— 28 in Geology of the World's Major Gold Deposits and Provinces (eds Sillitoe, R.H., Goldfarb, R.J., Robert, F., Simmons, S.F.), Spec. Publication 23, Society of Economic Geologists (SEG). doi: 10.5382/SP.23.01.

Yang, Ch.-X. & Santosh, M. (2020) Ancient deep roots for Mesozoic world-class gold deposits in the north China craton: An integrated genetic perspective. Geoscience Frontiers 11, 203— 214. doi: 10.1016/j.gsf.2019.03.002. OPEN ACCESS under CC BY-NCND license (

Back to top

Safe Tailings Facilities? What are the Challenges? How to Approach Zero Risk? (March 20, 2021)

Tailings facility failures may endanger human lives, property, water resources, and the environment. They make great media news that shame the whole mining industry. This must end!

If you agree and if you are one of the many professionals who work in mining or in a mining-related job, in practice or in research, a suite of 25 papers that recently appeared in Mine Water and the Environment, the Journal of the International Mine Water Association (IMWA), is a great source of valuable technical information. The whole issue seems to be OPEN ACCESS. I was able to download some papers but I could not find an affirmative information. So just try. If this should not work, join the Association. The annual membership fees are very moderate.

Mine Water and the Environment, the Journal of the International Mine Water Association (IMWA), Volume 40, issue 1. Tailings Storage: Challenges & Technologies, 25 articles in this issue. ?OPEN ACCESS??


In the Introduction, Fernández & Kleinmann (eds) (2021) conclude their short presentation of each of the 25 high class papers in the issue by warning words:

However, many challenges remain, including

Rubio mentions the term 'upstream dam construction'. This is explained by the figure below, which is taken from a hydrogeological article in this issue (Morton 2021).

Three construction variants of sequentially raised tailings dams or Tailings Storage Facilities (Morton 2021); note that the upstream variant has morphed toward continuous (not stepped) raising operation. In my Economic Geology you may find a photograph and explanation of this method (Pohl 2020 page 485 Fig. 5.19).


So how to approach zero risk? Let's act!


Fernández Rubio & Kleinmann, B. (eds) (2021a) Mine Water and the Environment Journal of the International Mine Water Association (IMWA), Volume 40, issue 1. Tailings Storage: Challenges & Technologies, 25 articles in this issue. ?OPEN ACCESS??

Fernández Rubio & Kleinmann, B. (2021b) Introduction to Special Issue on Tailings Storage: Challenges and Technologies. Mine Water Environ 40, 1–5.

Morton, K.L. (2021) The Use of Accurate Pore Pressure Monitoring for Risk Reduction in Tailings Dams. Mine Water Environ 40, 42-49 (2021).

Pohl W.L. (2020) Economic Geology, Principles and Practice: Metals, Minerals, Coal and Hydrocarbons — an Introduction to Formation and Sustainable Exploitation of Mineral Deposits. 2nd ed. 755 pp. Schweizerbart Science Publishers, Stuttgart.

back to top


Newly Ordered ARCHIVED NEWS on my Website for Ease of Access and for Finding Links to Topics. Go to (March 15 2021)

NEXT Book Review of Economic Geology 2nd ed. by Walter L. Pohl: Written by Dr. Richard H. Sillitoe (February 15, 2021)


Pohl, W.L. (2020) Economic Geology, Principles and Practice: Metals, Minerals, Coal and Hydrocarbons – an Introduction to Formation and Sustainable Exploitation of Mineral Deposits. 2nd ed. 755 pp. Schweizerbart Science Publishers, Stuttgart.

Dearly I would like to acquaint you with the whole of Richard's review, which is a paradigm of an informed, informative and useful critique, but copyright rules do not permit this. Accordingly, I cite here the last paragraph:

Economic Geology, Principles and Practice has something to offer to diverse audiences. It provides a useful introduction to the subject for senior undergraduates not only in economic geology but also in mining engineering, metallurgy, environmental studies and related fields. Graduate students and earlycareer professionals could dip into the volume for up-to-date introductions to topics beyond their specialist fields, and —if this reviewer is representative —even seasoned practitioners will surely find something new and of interest. The book is also strongly recommended to policy-makers, government officials, NGOs and the investment community needing a balanced overview of economic geology and the pivotal role it will play in the 'greening' of the world economy.

You do know that Dr. Sillitoe is one of the truly great economic geologists of our time?

Sillitoe, R.H. (2021) Walter L. Pohl: Economic geology, principles and practice: metals, minerals, coal and hydrocarbons — an introduction to formation and sustainable exploitation of mineral deposits (2nd ed.). Mineralium Deposita 56:619–620.

Back to top

Gold Assay Methods — Precise and Accurate for Reporting to Stock Exchanges? (February 10, 2021)

Public companies, the shares of which are traded on stockmarkets are obligated to report regularly on progress in their operations. Any figures stated (grade, core intersections, resources) must be of highest quality. This is central to issues that are regulated by codes such J0RC (2012) in Australia.

Analytical data in exploration geochemistry need not in all cases be equal to the absolute element content in a sample, or in other words, accuracy may not be essential. Deviations from the absolute content (e.g. an international laboratory standard) may be tolerated, if the relative error remains within narrow limits. Accuracy is assessed by employing certified reference materials (standards). In contrast, excellent reproducibility of results from duplicates, that is high precision, is absolutely required. Precision is the base for any data evaluation, especially if the contrast between background and anomalies is small. In all analytical programmes error control (in practice called QAQC — quality assurance and quality control) is a fundamental aspect. Errors may be introduced during sampling, sample processing and transport, and in the laboratory. Always, samples should be randomized before submission to the laboratory in order to avoid analysing them in the same sequence as collected. Also, it is good practice to repeat at least 10% of sampling. Analytical errors are revealed by repeatedly inserting duplicates, blanks or a standard of known composition such as international reference materials into the series. Control by another laboratory is advisable. Based on this kind of data, it is possible to calculate total error margins and the confidence interval.

If you are working for a gold miner, you know that getting precise and accurate data for gold tenors in ore (Figure 1) or in prospecting samples is not easy. Ore grades are low (ppm) and ppb may be required in exploration. Gold-specific problems often arise during sampling and analysis because of three points (Pohl 2020):

Figure 1 — Gold-Quartz-Sulfide Ore, Fairbanks, Alaska

In every individual project it is extremely important to experiment and work out a procedure that minimizes resulting errors. For gold, time-tested fire assays and INAA (Instrumental Neutron Activation Analysis) are analytical standard methods. A newly adapted gamma-activation analysis (developed by CSIRO, Australia, and marketed by Chrysos since 2016) provides equal precision and accuracy, and accepts samples weighing several hundred grams, which avoids errors induced by subsampling. Meanwhile, Chrysos TM Photon Assay has been chosen by many mines across gold producers globally. Durance et al. (2014) wrote that

the majority of pXRF studies are conducted by private industry and are regarded as proprietary; it appears that the same applies today to Chrysos Photon Assay.

Figure 2 — ChrysosTM Photon Assay is applicable for commercial analytical laboratories and for mine site use; this image shows sample containers on the conveyor belt feeding the analyzer. Courtesy © Chrysos

The paper by Durance et al. (2014) provides an exemplary investigation of pitfalls in using a novel analytical tool, in their case of pXRF (portable X-ray fluorescence spectroscopy). They stress the importance to regard the rules of choosing a matched matrix, and of not analysing samples and standards through paper packets, as is often done instead of XRF-suitable film, impairing the precision and accuracy of pXRF data obtained; generally, the pXRF signal is attenuated by the paper. Also, the authors propose a best practice approach that corrects pXRF data using factors obtained from laboratory-based analysis (such as XRF or ICP-MS) of representative samples derived from the same project area so that they are matrix- and concentration-matched.

Figure 3 — Olympus VantaTM portable X-Ray Fluorescence analyser

The project area was a former gold mine East of Kalgoorlie in Western Australia. About 900 samples were pulverised (to 90% passing 75 mm). Moisture content of samples for pXRF analysis should not exceed 20%. Standards employed were fresh, oxidised, mafic and felsic lithologies that were originally designated for JORC-compliant QAQC reporting for high-and low-grade gold detection by bulk fire assay and ICP-MS analytical methods. Two National Institute of Standards & Technology (NIST) soil standards and a silica blank were supplied with the pXRF unit. Note that many standards are not certified for all elements, which are produced by pXRF; these " results " may be useless and not acceptable for JORC-compliant QAQC reporting.

The authors demonstrate such pitfalls and conclude: Portable XRF undoubtedly provides a rapid and cost-effective means of assessing geochemical changes down-hole and in the field, but the technique generates data containing uncertainties that need to be identified and removed prior to any detailed field or analytical campaign.


Chrysos (2021) Chrysos Photon Assay. URL Accessed February 2021.

CSIRO (2021) Commonwealth Scientific and Industrial Research Organisation. URL Accessed February 2021.

Durance, P., Jowitt, S.M. & Bush, K. (2014) An assessment of portable X-ray fluorescence spectroscopy in mineral exploration, Kurnalpi Terrane, Eastern Goldfields Superterrane, Western Australia. Applied Earth Science 123:3, 150-163.

JORC (2012) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code). Available from (The Joint Ore Reserves Committee of The Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia). Accessed February 2021.

Pohl, W.L. (2020) Economic Geology, Principles and Practice: Metals, Minerals, Coal and Hydrocarbons — an Introduction to Formation and Sustainable Exploitation of Mineral Deposits. 2nd ed. 755 pp. Schweizerbart Science Publishers, Stuttgart. Citing from section 2.3.1 Gold (pages 224 — 240); 5.2.4 Geochemical Exploration (454 — 460). (Soft Cover)

Back to top

A Diamond for your Loved One? As Proof for Deep Down-Cycling of Carbon into Earth? (January 6th, 2021)

How about an extremely rare diamond as a small gift? Although this is virtual, it stands for one of the numerous geoscientific discoveries of recent years. The majority of common diamonds (type I) formed at the boundary of lithosphere and astenosphere of the Earth (at 150-240 km depth), but this one shown in Figure 1, belonging to rare blue boron-bearing (type IIb) diamonds, came from the lower mantle (more than 660 km deep).

Figure 1 — A high quality 25.5 carat blue diamond recovered at Cullinan S.A. in April 2013. Credit: Petra Diamonds Limited

Smith et al. 2018 analysed trace minerals trapped in Clippir and in 46 samples of blue diamonds across the globe, and from this worked out that the gemstones must have formed in the lower mantle. This is confirmed by inclusions of bridgmanite (MgSiO3), the high-pressure form of olivine (called bridgmanite) in the deep mantle. Clippir crystallised from a melt made of Fe-Ni-C-S, the blue diamonds from boron-bearing fluids. Seawater-serpentinized oceanic crust and lithosphere are suggested to be the source of boron.

Both diamond types are some of the deepest ever found. Moreover, they reveal a pathway that extends from the oceanic crust at Earth's surface to the lower mantle, and a potential route for the ultra-deep cycling of carbon and water in our planet.

In an OreDepositHub talk in July 2020, Evan Smith showed a sketch of oceanic slab subduction and sinking, which provides this pathway (Figure 2). This is one branch of Carbon downcycling into the Earth, whereas volcanism is the largest source of Carbon upcycling from inner Earth into the atmosphere. Clippir, and the blue diamonds can be lifted upwards by mantle plumes that impinge on the subcontinental lithospheric mantle (SCLM) where they may be haphazardly mixed into kimberlite melts that erupt through mantle and crust, possibly forming diamondiferous pipes.

Figure 2 — Subduction of oceanic slab sinking into the lower mantle provides volatiles and matter that form type IIa Clippir and IIb boron diamonds. Upwelling can lift the deep diamonds to the base of continental lithosphere where they may mix into nascent diamondiferous kimberlite melt (Evan Smith ODH029 2020).

Ore Deposits Hub at was founded because of Covid-restrictions to scientific exchange and is sponsored by the professional economic geology societies SGA, SEG, & IAGOD in order to provide Open Science Talks. If you register you may profit from the services they offer. Take the chance to meet fellow scientists!

And how can we fit this into the Petrogenetic-Tectonic Classification of ore deposit formation, which I am promoting? — Well, the petrogenesis of these diamonds is metamorphism passing into anatexis. Considering the high pressures at these depths, I suggest that they crystallised from a supercritical hydrous melt (page 131) also called a supercritical fluid/melt phase (as described by Thomas & Davidson 2016) on pages 35-36 in my Economic Geology 2nd ed. (Pohl 2020). Note that generally in present-day geoscience, the existence of this kind of phase is sadly disregarded. The tectonic setting may be called subduction and down-sinking of oceanic slabs.


Pohl, W.L. (2020) Economic Geology, Principles and Practice. 2nd ed. 755 pp. Schweizerbart Science Publishers, Stuttgart.

Smith, Evan (2020) How the biggest and best diamonds defy exploration. Gemmological Institute of America. Ore Deposits Hub (Youtube video ODH029) July 15 2020.

Smith, E.M., Shirey, St.B., Richardson, St.H., et al. (2018) Blue boron-bearing diamonds from the Earth's lower mantle. Nature 560, 84—87. doi: 10.1038/d41586-018-05830-6

Thomas, R. & Davidson, P. (2016) Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state — Consequences for the formation of pegmatites and ore deposits. Ore Geol. Rev. 72, 1088-1101.

Back to top